
1

INFORMATION EXTRACTION AND SPEECH RECOGNITION

Ralph Grishman

Computer Science Department
New York University
New York, NY 10003

ABSTRACT

Information extraction is the process of analyzing natural
language and collecting information about specified types
of entities, relationships, or events. This paper provides an
overview of a range of information extraction tasks, and
briefly describes the structure of systems for performing
these tasks. The paper then considers the impact of speech
recognition errors on such systems, and describes some
experiments which indicate how the effect of such errors
may be reduced. Finally, the paper speculates on avenues
of research which may enhance the performance of extrac-
tion systems on speech transcripts.

WHAT IS INFORMATION
EXTRACTION?

Information extraction systems identify particular types of
entities, relations, or events in natural language text. In
some cases the result is a marked-up text (say, with some
entities highlighted); in other cases, it is a data base con-
taining the critical pieces of information about each event
or relation (such as the participants, date, location, effect,
etc.). Experimentation with extraction systems has been
growing rapidly, reflecting both the need to process in-
creasing amounts of machine-readable text (such as on-line
newspapers) and the ability of computational linguists to
construct relatively robust extraction systems.

Of course, “identifying entities, relations, or events” can
cover a wide range of systems. In the United States, the
notion of what constitutes information extraction has been
heavily influenced by the Message Understanding Confer-
ences (MUCs) (Grishman and Sundheim 96, MUC 95).
The focus of these Conferences, like DARPA Speech
Workshops, has been on the evaluations which preceded
them. For most of the MUCs, the evaluation involved a
single task of event extraction, but recent MUCs have
added a range of evaluation tasks. The current MUC
evaluation (MUC-7) includes five tasks applied to English
text: named entities, template elements, template relations,

coreference, and scenario templates.1 We shall look at
these tasks (except for coreference) briefly.

Named Entity

1 In addition, the parallel MET evaluation is per-
forming multilingual named entity extraction — for
Japanese, Chinese, and Thai.

The four tasks we shall examine form a hierarchy, with the
named entity task the simplest, the template entity task
building on the efforts of named entity recognition, and the
template relation and scenario template tasks building on
the results of the template entity task.

The named entity task primarily involves identifying and
classifying names in text. Specifically, names referring to
individual people, to organizations, and to locations are to
be tagged. The text is tagged using SGML-style markup,
using a tag of “ENAMEX” with TYPE=“PERSON”,
“ORGANIZATION”, or “LOCATION”. A few other
structures are also to be tagged: date expressions (“January
10”, “last week”), time expressions (“4 PM”, “noon”), cur-
rency (“$10 million”), and percentages (“10%”). A sample
named entity annotation is shown in Figure 1.

0U���(1$0(;�7<3(³3(5621´!6HDUV��(1$0(;!
ERXJKW�D�QHZ�VXLW�LQ
�(1$0(;�7<3(³25*$1,=$7,21´!6HDUV��(1$0(;!
LQ
�(1$0(;�7<3(³/2&$7,21´!:DVKLQJWRQ��(1$0(;!
��7,0(;�7<3(³'$7(´!\HVWHUGD\��7,0(;!�

Figure 1. Named Entity annotation

Template Element

A person or organization may be referred to several times
in an article, sometimes by names in different forms,
sometimes by descriptions. For example, an article might
mention “Carol Mantix” and later refer to her as “Ms. C.
Mantix” and “that well-know raconteur and computational
linguist”. In the template element task, we create a form of
data base for each article, with one entry for each person

and organization mentioned in the article.2 The entry lists
all the forms (names and descriptions) which have been
used to refer to the entity in the article. A sample entry is
shown in Figure 2�

2 MUC-7 also added template elements for a limited
range of artifacts, namely vehicles, and for locations.

0U��6HDUV�ZDV� LQYLWHG� WR�DGGUHVV� WKH�FURZG�� �%XW� WKH� UHWL�
FHQW�SURJUDP�PDQDJHU�GHFOLQHG�

�(17,7<��!��
(17B1$0(� ³6HDUV´
(17B'(6&5,3725� ³WKH�UHWLFHQW�SURJUDP�PDQDJHU´
(17B7<3(� 3(5621
(17B&$7(*25<� 3(5B&,9

Figure 2. A Template Element

Template Relation

The Template Relation task currently captures three types
of relations in the text:

• the location-of relation ties an organization to one of
its locations

• the employee-of relation ties a person to the organiza-
tion he/she works for

• the product-of relation ties an artifact to the organiza-
tion that produced it

For example, from the text

Capt. Dennis Gillespie was the commander of the
Navy’s Fighter Squadron 213, based in Miramar Na-
val Base near San Diego.

one should capture the relations that Capt. Dennis Gillespie
is employed by the Navy, and that Fighter Squadron 213 is
located in Miramar Naval Base. Template relations are
recorded as relations between, or properties of, template
elements.

Scenario Template

A scenario, in MUC terminology, is a description of a class
of events. Examples of scenarios which have been used in
prior MUCs include naval sightings and attacks, terrorist
events, formation of international joint ventures, union
negotiations, management succession (corporate executive
hirings and firings), and plane crashes. Each scenario in-
cludes a list of the pieces of information to be provided
about the event. For management succession, for example,
the information included the identity of the person and the
corporation, the position at the corporation, the reason for
starting or leaving the job (if given), etc.

The information about the event is used to fill a template
for the scenario. Some slots in the template are filled with
strings, while others are filled with pointers to lower level
objects (template elements and other objects), creating a
hierarchical structure of information about each event.
Figure 3 shows what a filled management succession sce-
nario template might look like. This is considerably simpli-
fied from the actual MUC-6 template, and uses MUC-7-
style template elements.

5LFKDUG�5HOLVK�ZLOO� UHWLUH� QH[W� ZHHN� DV� SUHVLGHQW� RI� WKH� IDPRXV
IDVW�IRRG�UHVWDXUDQW��)UDQN¶V�)UDQNV�,QF�

�(9(17��!��
&203$1<� �(17,7<��!
3(5621� �(17,7<��!
326,7,21� �SUHVLGHQW�
67$786� 287

�(17,7<��!��
(17B1$0(� ³5LFKDUG�5HOLVK´
(17B7<3(� 3(5621
(17B&$7(*25<� 3(5B&,9

�(17,7<��!��
(17B1$0(� ³)UDQN
V�)UDQNV´
(17B7<3(� 25*$1,=$7,21
(17B&$7(*25<� 25*B&2

Figure 3. A filled Scenario Template�

The scenario template task changes for each evaluation.
The other tasks are expected to remain roughly constant
from one evaluation to the next, although we may be in-
cluding additional relationships in the template relations
task.

Some comparisons

To conclude this summary of extraction tasks, we can con-
trast them with other types of tasks. We can distinguish
document retrieval (or “information retrieval”) from infor-
mation extraction by noting that document retrieval nor-
mally retrieves an entire document (or, possibly, a passage)
in response to a request for information, while information
extraction retrieves very selective information from the
document — “just the facts”.

Full text understanding has the goal of identifying and for-
malizing all the information in a text. This is, of course, a
very open-ended problem. In contrast, in information ex-
traction we specify in advance (in the scenario specifica-
tion) the types of objects and relationships which we wish
to capture from the text. This limits the problem and de-
fines the output structure. Further, by creating a well-
defined target it makes it possible to evaluate systems
against one another.

THE STRUCTURE OF INFORMATION
EXTRACTION SYSTEMS

Alternative approaches to extraction

For the named entity task, the general approach has been to
write a set of finite-state (regular) patterns to capture the
different types of entities. For newspaper text, the craft of
writing these patterns is highly developed; performance of
the best named entity taggers is about F=0.96, comparable
to human performance on this task (the F measure is de-

scribed on the next page). Because of the simplicity of the
task, there have been a number of efforts recently to learn
named entity rules from tagged corpora, using techniques
such as stochastic models based on n-gram statistics (Bikel
et al. 97) and decision trees.

For the remainder of this section, we will focus on systems
for the scenario template task. In many implementations,
the more basic template annotations (template elements and
template relations) are produced “along the way” to creat-
ing the scenario templates.

Although there are many different extraction systems, the
overall structure of most of these systems is quite similar.
The most evident difference is in the degree of syntactic
analysis which is performed. Some systems perform a full
syntactic analysis: each input sentence is parsed, and then
the syntactic (tree) structures are analyzed for instances of
particular (semantic) patterns related to the events of inter-
est. This approach is limited by the accuracy of full-
sentence syntactic analyzers. While the performance of
these analyzers has been steadily increasing of late, the
limitations of these parsers have led groups to pursue alter-
nate approaches, using either partial parsing or no syntacti-
cally-based analysis at all.

Many of these systems employ what is often referred to as
“pattern matching”: bottom-up deterministic analysis per-
formed in several stages, with each stage using a set of
finite-state patterns. In some systems, all of these stages
involve semantically specific patterns (that is, patterns
which refer to semantic word and phrase classes). Other
systems combine semantically based and syntactically
based patterns.

The particular extraction system we shall describe here, the
NYU Proteus system (Grishman 95), follows this middle
road. It uses a limited degree of syntactic analysis, for
noun groups and verb groups, along with semantically spe-

cific clause-level patterns.3

The Proteus Extraction System

In the Proteus extraction system, processing of each sen-
tence begins with lexicon look-up (using a large English
syntactic dictionary augmented by lists of names and spe-
cialized terms) and part-of-speech tagging using a statisti-

cal tagger.4 This is followed by a series of pattern-
matching stages, which identify and mark successively
larger constituents. The main stages are

• name patterns
• noun group and verb group patterns

3 In this regard we have followed the lead of SRI
International and their FASTUS information extrac-
tion system (Appelt et al. 93).
4 We wish to thank BBN for providing their part-of-
speech tagger, POST.

• noun phrase patterns
• clause (event-specific) patterns

Each stage consists of a set of patterns; each pattern is a
regular expression, whose elements may be literals, lexical
categories (defined in the dictionary), or constituents de-
fined by an earlier set of patterns. For each set of patterns,
the sentence is processed from left to right. Starting at each
token, the system attempts to match each pattern in the set
against the remainder of the sentence. If the match is suc-
cessful, an associated action is performed, normally the
creation of a new constituent. If several patterns match, or
one pattern matches in several ways, the longest match is
taken (and, among matches of equal length, the first is
taken). These successive stages of pattern matching thus
perform a deterministic, bottom-up partial analysis of the
sentence.

Pattern elements may also include semantic class con-
straints, stated in terms of a task-specific semantic classifi-
cation hierarchy. The noun group and verb group patterns
are general patterns stated in terms of syntactic classes
alone. On the other hand, most of the noun phrase patterns,
and all of the clause patterns, are domain or task-specific,
and make reference to these semantic classes.

For example, one of the clause-level patterns for events
where a person is appointed to a position is

np(C-organization) sa vg(C-appoint) sa
 np(C-person) sa "as" np(C-position)

This matches examples such as “IBM yesterday appointed
Fred Smith as president.” C-organization, C-appoint, C-
person, and C-position are semantic class constraints. “sa”
stands for “sentence adjunct”, and allows for intervening
modifiers such as “yesterday”.

The noun phrase and clause patterns create a “logical
form”: an internal representation of the events and entities
of interest for the scenario. This logical form is then proc-
essed by a reference resolution component, which identifies
references to previously mentioned entities and events.
Finally, when the entire article has been processed, some
simple, task-specific inferencing is done and the logical
form is mapped into the required template structure.

EVALUATION OF EXTRACTION
PERFORMANCE

As we noted earlier, a centerpiece of the Message Under-
standing Conferences has been the comparative evaluation
of the participants' systems on a variety of extraction tasks.
Some time before the evaluation, the conference organizers
provide a specification of the scenario and training data for
the various tasks. For the evaluation they select additional
messages or articles and create an “answer key” — hand-
prepared data base entries indicating what information
should be extracted from the text.

The answer key makes it possible to evaluate the perform-
ance of an extraction system — to see how closely its out-
put matches the key. The two most common measures of

performance are recall and precision. Roughly speaking,
for the template tasks,

keyin slots filled ofnumber

filledcorrectly slots ofnumber
 recall=

systemby filled slots ofnumber

filledcorrectly slots ofnumber
 precision =

In addition, a composite F score is generally reported:

EXTRACTION ON SPEECH
TRANSCRIPTS

As we have seen, extraction systems typically operate by
looking for certain structures — sequences of constituents
— in the input text, either through full (syntactic) parsing
or through more limited, semantically-directed pattern
matching. Such methods work effectively for well-edited,
relatively error-free texts such as on-line newspapers.
However, their performance degrades rapidly when applied
to texts with a significant number of errors, such as those
produced by speech recognition. (Weischedel et al. 96)
briefly discuss the effect of transcription errors on the
Template Element task.

We consider here how to reduce this degradation in per-
formance, again focussing on the Scenario Template task:
how to extract at least partial information from text which
includes a substantial number of input errors.

Adapting to Speech Errors: Modifying
the Patterns

The patterns which have been developed for the informa-
tion extraction system are designed to account for the vari-
ety of syntactic structures, including active clauses, passive
clauses, relative clauses, conjunction, etc. However, pat-
terns such as the example above, with several required
elements, are quite sensitive to errors in the input text. If
any of the required elements are missing, or an extraneous
token intervenes between the elements, the pattern won't
match. As the error rate increases to the point where 20%
to 30% of the tokens are incorrect, the extraction perform-
ance plummets to near 0. However, intuitively, looking at
the errorful text, we can very often identify sequences
which are corrupted versions of events of interest. For
example, even in the text

HE'S EXCEED LANCE R PROMISE COUPS
SEPTEMBER WAS NAMED PRESIDENT AND CHIEF
AGREEING OFF SERVED PARENT
which is a low-quality transcription of

HE SUCCEEDS LANCE R. PRIMIS WHO IN
SEPTEMBER WAS NAMED PRESIDENT AND CHIEF

OPERATING OFFICER OF THE PARENT

we can discern that the text is talking about an appointment
as president and some additional position, even though we
can't get all the details (the fellow's last name and his sec-
ond position) quite right. How can we adapt our extraction
system to make similar identifications?

Consider a simple model in which the errorful text is cre-
ated by sending the original text through a noisy channel
which both deletes some incoming tokens and inserts ran-
dom tokens (drawn from some set of tokens Y) into the

text.5

noisy channel
original text corrupted text

Further, let us suppose for simplicity that the extraction
system is just looking for a single pattern, A B C. We can
represent this pattern by the graph:

A B C

If we built a recognizer based on this graph, we would
identify an event each time arc C was traversed.

Suppose now we wish to construct a corresponding graph
representing the corrupted text. What would this graph
look like? To account for the possible insertion of tokens
drawn from distribution Y after each token of the original
text, we introduce loops labeled by Y into the graph. To
account for the possible deletion of input tokens, we intro-
duce a null arc (labeled by ϕ) into the graph, in parallel
with each original arc. We end up with the graph

ϕ

A B C

ϕϕ

Y Y

In other words, we need to modify the original pattern to
skip pattern elements (the null arcs) or to skip input tokens
(the Y arcs).

EXPERIMENTS

Preparation of speech transcripts

5 We model a substitution as a deletion followed by
an insertion.

precisionrecall

precisionrecall2

+

××

precisionrecall

precisionrecall2
F

+
××

=

To evaluate our approach, we used the “management suc-
cession” scenario developed for MUC-6 (MUC 95, Grish-
man and Sundheim 96), which involves information about
people who enter or leave executive positions in compa-
nies.

From the 100 training articles provided for MUC-6, we
selected 11 which included a large number of succession
events (altogether, 47 instances of starting or leaving a
position). These articles were read aloud and recorded by a
member of our staff. The recordings were segmented into
utterances using a simple program for detecting periods of
relative silence. The utterances were then transcribed using
the SPHINX-II speech recognition system (Huang 93) us-
ing a language model for business news articles.

We did adjust several parameters, including in particular
the segmentation criteria, in order to generate different
qualities of transcripts. However, since we were specifi-
cally interested in generating transcripts with substantial
numbers of errors, no great effort was made to optimize the
transcription quality; the transcripts should not be taken as
representative of SPHINX recognition quality for a well-
tuned system.

Adapting the patterns

We have modified our extraction system, first to handle an
idealized speech transcript, and then to handle the errors
introduced by the speech recognizer.

The modifications for an idealized speech transcript were
quite simple. We removed all punctuation from the extrac-
tion patterns. We allowed for spelled-out numbers (“nine-
teen ninety eight”) in places where digit sequences had
been expected. Finally, we modified our name recognizer,
which normally uses case information to detect names
(most names are capitalized), to rely instead on the part-of-
speech tagger to distinguish names from common nouns.

To handle real, errorful speech transcripts, we basically
followed the approach outlined above. We modified the
pattern matching engine in our extraction system so that
individual pattern elements would be optional (corre-
sponding to the null arcs in the graph), and to allow one or
more tokens to be skipped between pattern elements.
Things are not entirely straightforward, however, for sev-
eral reasons:

First, the modified patterns described above will be effec-
tive only if it is unlikely that the tokens inserted by our
noisy channel will match elements sought in our pattern.
This will be the case, generally speaking, for the semanti-
cally-specific patterns in the noun phrase and clause pattern
sets; the chances are quite small that randomly inserted
tokens will constitute a verb group of semantic class ap-

point or a noun phrase describing a position. 6 This is less
true for the “low-level” patterns for names, noun groups,

6 This is not as true for people's names; randomly
generated tokens do occasionally get tagged as a per-
son's name.

and verb groups. The chances are quite large that a ran-
domly inserted token will be a valid part of a pattern for a
company name, a noun group, or a verb group. For exam-
ple, almost any adjective or singular noun (a large fraction
of the vocabulary) would match a noun group pattern fol-
lowing a determiner.

We have therefore applied the pattern modification only to
the patterns in the noun phrase and clause pattern sets. In
terms of our noisy channel model, we view the input as a
sequence of noun groups and individual tokens (outside of
noun groups); the channel may insert or delete a noun
group or an individual token outside of a noun group.

Second, the modified graphs will typically allow several
different analyses of an input. Suppose we have patterns
ABC and AC, and we have input ABC. This input could
match the ABC pattern (no tokens skipped), or the AC
pattern (skipping token B). In this case, we will prefer the
match against the ABC pattern, skipping no tokens. More
generally, if several matches are possible (with different
numbers of skipped tokens), the system selects the match
for which the maximum number of elements skipped be-
tween any pair of elements in a pattern is minimal. We
place a limit on the maximum number of tokens skipped
between any pair of pattern elements. For our test corpora,
we established a limit of 5 tokens; we determined experi-
mentally that performance did not improve beyond 5
skipped tokens.

Third, in allowing for deletions we have restricted the pat-
tern elements which can be deleted. In particular, for
clausal patterns, we have required that the verb group be
present. Without such a constraint, we would get a large
number of false matches.

In many cases, the text which matches a pattern element
ends up filling a slot in the output data base. If we hy-
pothesize that the text was deleted, we must decide what to
put in the data base slot. The simplest possibility, of
course, is to leave the slot blank. However, we have also
experimented with another possibility, in which we attempt
to recover the element from prior discourse using standard
reference resolution methods. For example, if the company
name is omitted, the system will search for the most recent
prior element of type company.

Results

In order to observe the efficacy of our model over a range
of error rates, we have used two different transcripts, pro-
duced from the same audio file with different settings for
some sentence segmentation and recognition parameters.
The insertion, deletion, and combined word error rates for
the two transcripts are:

insertion
rate

deletion
rate

word
error rate

transcript 1 16.0% 13.7% 19.5%
transcript 2 25.7% 24.1% 32.1%

In addition, we ran our base (MUC-6) system on the origi-

nal (mixed-case) text, and on a “perfect transcript”, all
upper case text with punctuation removed. The results for
these different combinations of transcripts and patterns are
as follows:

corpus patterns recall preci-
sion

F

mixed case original 62% 74% 0.68
perfect tran-
script

original 36% 70% 0.48

transcript 1 original 15% 73% 0.26
transcript 1 modified 23% 76% 0.35
transcript 2 original 5% 85% 0.10
transcript 2 modified 17% 75% 0.28

We note that there is a significant loss in recall in moving
from the mixed case text to the perfect transcript. This
reflects the fact that our name recognizer was tuned for
mixed-case text, and has been only minimally modified to
work with the monocase transcript. However, the fall-off
in performance in even greater when we move to the real
transcripts; for transcript 2, with 30% word error, we lost
over 85% in recall compared to the perfect transcript.
While recall on such a heavily corrupted text is necessarily
still poor with our modified patterns, the improvement is
striking (about a factor of 3).

LOOKING AHEAD

We have shown that it is possible, though quite simple
methods, to recover a substantial portion of the loss of per-
formance of an information extraction system when pro-
vided with moderately noisy input data. Such a system
could have application, for example, in performing extrac-
tion on broadcast news data, where recognition with word
error rates of 20% to 30% is now possible. In this closing
section, we speculate on a number of areas of inquiry
which might result in substantial additional gains in per-
formance.

Name Recognition

A substantial part of our loss in performance reflects the
problems of our system in recognizing names. This is
really a combination of two types of problems.

First, even when the individual tokens are transcribed cor-
rectly, our system — which has been crafted primarily for
mixed-case text — does a poor job of finding the names.
This is reflected in the considerable drop in performance
when moving from the mixed-case text to the perfect tran-
script. It should be possible to eliminate much of this drop
using a name recognizer better tuned to monocase text. In
particular, BBN has recently demonstrated a trainable name
recognizer based on n-gram statistics whose performance
on monocase text is close to that of the best systems on
mixed-case text (Bikel et al. 97), and whose performance
on speech transcripts is only slightly worse (Kubala et al

98).

Second, it is well known that correctly transcribing proper
names is a difficult task. (Weischedel et al. 96) discuss this
in the context of the Template Element task, and suggest
several alternatives. Among the possibilities they mention
are greatly enlarging the vocabulary to include infrequent
proper names (improving proper name recognition at some
cost in overall accuracy) and tagging out-of-vocabulary
(OOV) tokens for subsequent manual transcription. They
note that the latter is not very promising for the Template
Element task; one would probably have to transcribe all
the OOV items to produce a useful output. For the Sce-
nario Template task, on the other hand, it should be suffi-
cient to transcribe only OOV items which fit into scenario
patterns; in some applications, one might record the audio
signal as part of the template, and wait until the Scenario
Templates are used in some retrieval or analysis task before
transcribing items of potential interest.

Probabilistic Models

The mechanisms described above have attempted to use
some intuitive notion of preference to select among alter-
native pattern matches — for example, to prefer the match
which skips the minimal number of tokens. It should be
possible to provide a firmer basis for these preferences
through a probabilistic model. We can observe the relative
frequencies of the different patterns in the original text, and
use this to create a probabilistic model of the original text
for this scenario. This model would include probabilities
for tokens which fall outside the patterns, perhaps using
unigram probabilities. For example, if we had our pattern
ABC (occurring with probability p) and a background dis-
tribution of tokens X, our model would look like

C

B

 X

A

1-p

p

Next, one would measure insertion and deletion rates at the
level of names and noun phrases, and use these to create a
statistical model of the corrupted text, like the model we
created before. A probabilistic pattern matching could then
be performed, seeking the most probable path through this
graph. An examination of the results of our current pattern
matching suggests that this approach could produce some
improvements in performance.

The probabilistic approach should also allow us to obtain
some recall/precision trade-offs more directly than with our

current, deterministic system. For example, raising the
probabilities of the patterns in the basic (uncorrupted text)
model could be used to increase recall. In addition, it may
be possible to increase recall by searching the word lattice
produced by the recognizer, rather than using just the top
hypothesis from the recognizer.

Dealing with multiple pattern sets

The current extraction architecture makes deterministic
decisions at each stage of pattern matching. This has
proven generally satisfactory for text applications. For
processing speech transcripts, however, where the uncer-
tainties are greater, it may be better to propagate a limited
set of alternative analyses from one stage to the next, as a
lattice with probabilities marked. This seems natural, for
example, if we use a corpus-trained name tagger which
makes probabilistically based decisions in any case, and
currently only outputs the top-ranking choice.

We may also obtain some improvement in performance by
replacing the current syntactic patterns for noun groups
with semantically constrained patterns. While the syntactic
patterns are effective for text analysis, they are easily led
astray by noise in the speech applications, since a large
fraction of inserted words (nouns, adjectives) would match
an element of a noun group. Semantically constrained
noun group patterns would inevitably lead to some loss of
coverage, but would be more robust against the noise of
randomly inserted tokens.

ACKNOWLEDGEMENT

The work reported here was supported in part by the De-
fense Advanced Research Projects Agency under contract
DABT63-93-C-0058 from the Department of the Army.

REFERENCES

(Appelt et al. 93) D. Appelt, J. Hobbs, J. Bear, D. Israel,
and M. Tyson. Fastus: a Finite state processor for
information extraction from real world text. In
Proc. 13th IJCAI, Chambery, France, August 1993.

(Bikel et al. 97) Daniel Bikel, Scott Miller, Richard
Schwartz, and Ralph Weischedel. Nymble: A
High-performance Learning Name Finder. Proc.
Fifth Conf. on Applied Natural Language Proc-
essing, 1997, pp. 194-201.

(Grishman 95) Ralph Grishman, Where's the Syntax? The
NYU MUC-6 System. Proc. Sixth Message Under-
standing Conf. (MUC-6), Nov. 1995. Morgan
Kaufmann.

(Grishman and Sundheim 96) Ralph Grishman and Beth
Sundheim, Message Understanding Conference-6:
A Brief History. Proc. COLING 96.

(Huang 93) X. Huang, F. Alleva, H. Hon, M. Hwang, K
Lee, and R. Rosenfeld. The SPHINX-II Speech
Recognition System: An Overview. Computer

Speech and Language 2 (1993), pp. 137-148.

(Kubala 98) Francis Kubala, Richard Schwartz, Rebecca
Stone, and Ralph Weischedel. Named Entity Ex-
traction from Speech. This volume.

 (MUC 95) Proc. Sixth Message Understanding Conf.
(MUC-6), Nov. 1995. Morgan Kaufmann.

 (Weischedel et al. 96) Ralph Weischedel, Sean Boisen,
Daniel Bikel, Robert Bobrow, Michael Crystal,
William Ferbuson, Allan Wechsler, and the PLUM
Research Group. Progress in Information Extrac-
tion. Advances in Text Processing: Tipster Pro-
gram Phase II. 1996.

